Neural semi-Markov CRF for Monolingual Word Alignment

Wuwei Lan*, Chao Jiang* and Wei Xu

Monolingual Word Alignment is Challenging

Aims to align words or phrases with similar meaning in two sentences in the same language.

• Spans may not follow linguistic boundaries, and annotation is expensive and time-consuming.

Utility of Monolingual Word Alignment

Support the analysis of human editing operations.

Utility of Monolingual Word Alignment

Support the analysis of human editing operations.

Utility of Monolingual Word Alignment

- Support the analysis of human editing operations.
- Improve the performance of text-to-text generation tasks (this work).
- Improve the interpretability of NLU tasks (SemEval 2016 on iSTS).
- Used for label projection and data argumentation (Culkin el at., 2021).

Our Solution for Monolingual Word Alignment

- Neural semi-markov CRF Alignment Model
 - Unify word and phrase alignment by variable-length spans.
 - 92.4 F1 on in-domain evaluation.
- A Multi-genre Monolingual Word Alignment Benchmark
 - Covers 4 different genres (MTRef, Wiki, news, scientific writing).
 - 9k sentence pairs annotated by in-house annotators.

Source S

- **Source:** Wall street stocks fell sharply.
- Target: Stocks slump on wall street.

Formulate it as a sequence tagging problem.

- **Source:** Wall street stocks fell sharply.
- **Target:** Stocks slump on wall street.

Formulate it as a sequence tagging problem.

Utilize semi-markov propertiy to handle source spans.

Source S

Alignment Label Transition

semi-Markov Conditional Random Fields for span alignment

$$\Psi(\mathbf{a}, \mathbf{s}, \mathbf{t}) = \sum_{i} score(s_{i}, t_{a_{i}}) + T(a_{i-1}, a_{i}) + cost(\mathbf{a}, \mathbf{s}, \mathbf{t})$$
Negative Log-likelihood Loss Hammin
$$exp\left(\Psi(\mathbf{a}, \mathbf{s}, \mathbf{t})\right)$$

$$exp\left(\Psi(\mathbf{a}, \mathbf{s}, \mathbf{t})\right)$$
all possible alignments

[NULL]	
Wall	Training objective:
street	$\sum -log P(\mathbf{a} \cdot \mathbf{s} \cdot \mathbf{t}) - log P(\mathbf{a} \cdot \mathbf{s} \cdot \mathbf{t})$
stocks	$ \sum_{t \in S_{t}} u_{s2t}(\mathbf{a}_{s2t}, \mathbf{s}, \mathbf{t}) = u_{s1}(\mathbf{a}_{t2s}) $
fell	s,t,a Source-to-target Target-to-
sharply	
wall_street	Decoding:
• • •	$V_{itorhi_liko} \Delta la rithm \perp Intersect \perp F$
fell_sharply	
•••	To handle spans longer the
stocks_fell_sl	arply

Multi-Genre Monolingual Word Alignment Benchmark

Annotated by in-house annotators, covers four different domains and the largest to data.

	MultiMWA	Size	Length	%word/phrase	%identical/non-id	Genre		
-	MTRef	3,998	22 / 17	62.0/38.0 52.6/47.3		News		
	Wiki	4,099	30 / 29	95.6/4.4	94.1 / 5.9	Wikipedia		
	Newsela	500	27 / 23	74.6 / 25.4	67.1 / 32.9	News		
	arXiv	200	29 / 28	96.6 / 3.4	93.4 / 6.6	Scientific writing		
_	Total	8,797	26 / 23	79.3 / 20.7	73.8 / 26.2	All above		

Achieves SOTA performance on both in-domain and out-of-domain evaluation.

In-domain	Out-of-domain					
MTReference	Newsela	arXiv	Wikipedia			

Achieves SOTA performance on both in-domain and out-of-domain evaluation.

JacanaToken (Yao et al. 2013a)

JacanaPhrase (Yao et al. 2013b)

PipelineAligner (Sultan et al. 2014)

In-domain	Out-of-domain					
MTReference	Newsela	arXiv	Wikipedia			
76.2	79.8	95.8	95.8			
75.8	79.4	93.7	94.9			
74.8	80.3	96.5	97.1			

Achieves SOTA performance on both in-domain and out-of-domain evaluation.

JacanaToken (Yao et al. 2013a)

JacanaPhrase (Yao et al. 2013b)

PipelineAligner (Sultan et al. 2014)

Our Neural CRF aligner

In-domain	Out-of-domain					
MTReference	Newsela	arXiv	Wikipedia			
76.2	79.8	95.8	95.8			
75.8	79.4	93.7	94.9			
74.8	80.3	96.5	97.1			
90.8	86.6	95.7	97.0			

Achieves SOTA performance on both in-domain and out-of-domain evaluation.

JacanaToken (Yao et al. 2013a)

JacanaPhrase (Yao et al. 2013b)

PipelineAligner (Sultan et al. 2014)

Our Neural CRF aligner

Our Neural semi-CRF aligner

In-domain	Out-of-domain					
MTReference	Newsela	arXiv	Wikipedia			
76.2	79.8	95.8	95.8			
75.8	79.4	93.7	94.9			
74.8	80.3	96.5	97.1			
90.8	86.6	95.7	97.0			
92.4	87.2	97.3	97.4			

#16.2 F1 #6.9 F1 #0.8 F1 #0.3 F1

Text Simplification: EditNTS* + Our Aligner

Word alignment can help to explicitly learn edit operations (addition, deletion and paraphrase).

Deletion Paraphrase With Canadian collaborators, Lloyd performed laboratory simulations of his model.

Lloyd performed successful laboratory experiments of his model. Addition

Used edit labels derived from our aligner for training:

KEEP, KEEP, KEEP

* EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing, Dong et al., ACL 2019

Text Simplification Experiments

Our aligner improves the SOTA text simplification model - EditNTS on two benchmark datasets.

	Newsela-Auto				Wiki-Auto			
	SARI	add	keep	del	SARI	add	keep	del
Complex (input)	11.8	0.0	35.5	0.0	24.0	0.0	74.6	0.0
Simple (reference)	86.9	84.7	78.4	97.6	81.7	66.2	97.5	81.5
EditNTS (Dong et al. 2019)	36.6	1.1	32.9	75.7	36.8	2.1	68.4	39.8
EditNTS + Aligner	37.5	1.3	33.4	77.9	37.4	1.9	69.5	40.9

Take Away

- Neural semi-markov CRF Alignment Model

 - Unify word and phrase alignment by variable-length spans. 92.4 F1 on in-domain evaluation.
- A Multi-genre Monolingual Word Alignment Benchmark
 - Covers 4 different genres (MTRef, Wiki, news, scientific writing).
 - 9k sentence pairs annotated by in-house annotators.

Trained model / code / data available at github.com/chaojiang06/neural-Jacana