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Word Embeddings are useful

* Many successful stories | WOMAN
* Named entity recognition -7 o
dame \ . g A /7
* Document ranking UNCLE

QUEEN

* Sentiment analysis

* Question answering ING

* Image captioning

* Pre-trained word vectors have been widely used
* GloVe [Pennington+14]: 11800+ citations
* Word2Vec|mikolov+13]: 18000+ citations



Existing English Embeddings are
trained on a large collection of text

e Word2Vec is trained on e GloVe is trained on a
the Google News dataset. crawled corpus.

100 billion
tokens

840 billion
tokens

\




How about other language?



How about other language?

* # Wikipedia articles in different languages

* English: ~ 2.5 M
* German: ~ 800 K
* French: ~ 700 K

}

High-resource languages:
23 languages have more
than 100K articles

e Czech: “100 K
e Danish: ~“95K

}

low-resource languages:
60 languages have
10K ~ 100K articles

 Chichewa: 58

}

very low-resource languages:
183 languages have less
than 10K articles



Sparsity of the co-occurrence matrix

 Word Embeddings are trained based on
co-occurrence statistics

* When training corpus is small
* Many word pairs are unobserved
* Co-occurrence matrix is very sparse

 Example: The text8 data

e 17,000,000 tokens and 71,000 distinct words

e Co-occurrence matrix has more than
5,000,000,000 entries, > 99% are zeros.



Zeros in the co-occurrence matrix

* True zeros
* Word pairs which are unlikely to co-occur
* Missing entries
* Word pairs can co-occur
* Unobserved in the training data | Center word
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Motivation

* Small size text corpus
= Extremely sparse co-occurrence matrix

* Existing approaches do not use unobserved
word pairs effectively
* E.g., Word2Vec subsamples only some negative
word pairs (negative sampling)
* Similar problem is faced by recommendation
system
* User-Product matrix
* Positive Unlabeled learning



Our contributions

1. Propose a PU-Learning framework for training
word embedding

2. Design an efficient learning algorithm to deal
with all negative pairs

3. Demonstrate that unobserved word pairs
provide valuable information



PU-Learning for Training
Word Embedding



PU Learning Framework

1. Pre-processing:
Building co-occurrence matrix

2. Matrix factorization by PU-Learning

3. Post-processing
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... the black cat likes milk ...

Step 1 — Building co-occurrence matrix

 Count words co-occurrence statistics

* We follow [Levy+15] to scale the co-occurrence

counts by PPMI metric

\_'_’

context window

context word

(cat, the)
(cat, black)
(cat, likes)
(cat, milk) ...

Center word
)
C Q, & Q
0.8 0.1 0 0
0 0 0 0
0 0 0 0
0.2 0 0 0.2

Scaled by PPMI
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context word

Step 2 - PU-Learning for matrix factorization
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Step 2 - PU-Learning for matrix factorization

A =~ wT H
Center word
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Regularization
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| context word |

Step 2 — Weighting function

Center word

/s O'oé,

4

frequent
_Treq
5.7 0

0.2 0

Three types of entries:

1. Co-occurrence count > X, 4
Cij — 1

2. Co-occurrence count < X4
Cij =count / Xpmax
3. Co-occurrence count = 0

Cij=p
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Step 2 - PU-Learning for matrix
factorization

Regularization

*We consider all entries
* Both positive and zero entries

17
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Step 2 - PU-Learning for matrix factorization

A ~ T
Iaenter word W H
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 We design efficient coordinate descent algorithm
(see paper for details)
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Step 2 - PU-Learning for matrix factorization

context word
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 We design efficient coordinate descent algorithm
(see paper for details)

wlhy = bt =B1)" + ) Alwill? + ) T[]’
i J

H

0.1

0.1

0.1

0.2

wl 0.1

0.1

0.2

0.2

19




context word

Step 2 - PU-Learning for matrix factorization

(,‘A\ter word

WT

Center word
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 We design efficient coordinate descent algorithm

(see paper for details)
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Step 2 - PU-Learning for matrix factorization
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 We design efficient coordinate descent algorithm
(see paper for details)
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Step 2 - PU-Learning for matrix factorization

A ~ wT H
Center word
Cop O'Og fab y 66'0,01, Center word
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 We design efficient coordinate descent algorithm

(see paper for details)
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Step 3 -- Post-processing

* Each word is represented by a word vector w; and a
context vector h;

* We follow [Pennington+14, Levy+15] to use the average of
w; and h; as word vector for word i
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Experiments



Results on English

Simulate the low-resource setting: Embedding is
trained on a subset of Wikipedia with 32M tokens
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Results on Danish (more results in paper)

Danish Wikipedia with 64M tokens
Test set are translated by Google translation
(w/ 90% accuracy verified by native speakers)
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Interpretation of Parameters - p

* Weight for zero entries in co-occurrence matrix
e Zero entries can be true 0 or missing
* p reflects how confident that the zero entries are true zero

rho V.S. Performance
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Take home messages

* A PU-Learning framework for learning word
embedding in the low resource setting

* Unobserved word pairs provide valuable information

Thanks!
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